Contact Information

Alamat: Komplek Rumah Susun Petamburan Blok 1 Lantai Dasar, Tanah Abang - Jakpus 10260

We're Available 24/ 7. Call Now.
10 Istilah AI yang Perlu Anda Ketahui
SHARE:

2. Pembelajaran mesin (Machine learning / ML)

Jika AI adalah tujuan, maka machine learning adalah bagaimana kita dapat mencapai tujuan tersebut. Machine learning merupakan bidang ilmu komputer di bawah payung AI, di mana manusia mengajarkan sistem komputer cara melakukan sesuatu, dengan melatihnya untuk mengidentifikasi pola dan membuat prediksi berdasarkan pola tersebut. Data dijalankan melalui algoritma secara berulang, dengan memberikan masukan dan umpan balik yang berbeda di setiap kalinya, untuk membantu mesin belajar dan meningkatkan performa selama proses pelatihan — seperti berlatih tangga nada piano 10 juta kali agar dapat membaca not musik secara cepat di kemudian hari.

Proses ini sangat membantu memecahkan masalah yang akan sulit atau tidak mungkin dilakukan dengan menggunakan teknik pemrograman tradisional, seperti untuk mengenali gambar dan menerjemahkan bahasa. Proses pelatihan ini membutuhkan data dalam jumlah besar, dan pengumpulan data ini adalah sesuatu yang baru bisa kita maksimalkan pemanfaatannya dalam beberapa tahun terakhir, seiring lebih banyaknya informasi yang didigitalkan dan keberadaan perangkat keras komputer yang telah menjadi lebih cepat, lebih kecil, lebih kuat, serta lebih mampu memproses semua informasi tersebut. Itulah mengapa large language model (LLM) yang menggunakan machine learning — seperti Bing Chat dan ChatGPT — tiba-tiba muncul.

Baca Juga:
Persaingan Raksasa Teknologi Garap Tools AI Saingi ChatGPT

3. Model bahasa besar (Large language model / LLM)

Large language models, atau LLM, menggunakan teknik machine learning untuk membantu memproses bahasa, agar mereka dapat meniru cara manusia berkomunikasi. Pengembangannya didasarkan pada neural networks, atau NN, yang merupakan sistem komputasi yang terinspirasi oleh otak manusia – seperti sekumpulan node dan koneksi yang mensimulasi neuron dan sinaps pada otak kita.

Model dilatih menggunakan teks berjumlah besar untuk mempelajari pola dan hubungan dalam bahasa, guna membantu model menggunakan kata-kata manusia. Kemampuan pemecahan masalah mereka dapat digunakan untuk menerjemahkan bahasa, menjawab pertanyaan dalam bentuk chatbot, merangkum teks, dan bahkan menulis cerita, puisi, serta code komputer.

Mesin tidak memiliki pikiran atau perasaan, tetapi kadang-kadang terdengar seakan memiliki opini sendiri, karena mereka telah mempelajari pola yang membantu mereka merespons layaknya manusia. LLM sering disesuaikan kembali (fine-tuned) oleh developer menggunakan proses yang disebut reinforcement learning from human feedback (RLHF) untuk membantu model menghasilkan output percakapan yang terdengar lebih natural.

Prev Next Page 2 of 5
SHARE:

Google Batal Bikin Pixel Tablet 2, Hindari Persaingan dengan Apple?

Ini Respons Kemenperin soal Proposal Investasi Apple Rp1,58 Triliun